Lead acid батарея. Аккумуляторы AGM VRLA. Преимущества свинцово-кислотных аккумуляторов

Изобретенный французским физиком Рэймондом Луи Гастоном Планте в 1859 году, свинцово-кислотный аккумулятор был первым аккумулятором для коммерческого использования. Сегодня, заливные свинцово-кислотные аккумуляторы широко используется в автомобилях, электропогрузчиках, источниках бесперебойного питания (ИБП).

Заливные свинцово-кислотные батареи состоят из свинцовых пластин, выступающих в качестве электродов, погруженных в воду и серную кислоту. Эти батареи требуют некоторого технического обслуживания за счет потери водорода с течением времени.

В середине 1970-х годов, исследователи разработали необслуживаемые свинцово-кислотные аккумуляторы, которые могут работать в любом положении в пространстве. Жидкий электролит был заменен увлажненными сепараторами и была решена проблема изоляции. Были добавлены предохранительные клапаны, которые сделали возможным удаление воздуха во время заряда и разряда. Тем не менее, необслуживаемые батареи стоят дороже и имеют более короткий срок эксплуатации, чем заливные батареи.

Свинцово-кислотные батареи могут иметь жидкий или гелеобразный электролит.

В зависимости от областей применения, появились два обозначения свинцово-кислотно батарей. Это небольшие герметичные свинцово-кислотные (SLA , sealed lead acid ) батареи и большие клапанные регулируемые свинцово-кислотные (VRLA , valve regulated lead acid ) батареи . Конструктивно, обе батареи одинаковы. (Некоторые могут возразить, что название «герметичная свинцово-кислотная батарея » является неправильным, потому что свинцово-кислотный аккумулятор не может быть полностью герметичен. Я соглашусь — это действительно так, название не совсем корректное, но это не мешает ему быть широкораспространенным). Я сделаю акцент на портативных батареях, поэтому буду ориентироваться на SLA .

В отличие от заливной свинцово-кислотной батареи, как SLA , так и VRLA имеют низкий потенциал перенапряжения, чтобы исключить выделение газа во время зарядки. Перезаряд вызывает газообразование и обезвоживание батареи. Следовательно, эти батареи не могут быть заряжены до их полного потенциала.

Свинцово-кислотные батареи не имеют эффекта памяти. Если оставить аккумулятор на подзарядке в течение длительного времени, то это не вызывает его повреждения. Время удержания заряда свинцово-кислотным аккумулятором является лучшим среди различных типов аккумуляторных батарей. В то время, как никель-кадмиевая батарея саморазряжается примерно на 40 процентов от ее накопленной энергии за три месяца, SLA саморазряжается на ту же величину в течение одного года. SLA являются относительно недорогими источниками энергии.

SLA не поддается быстрой зарядке — типичный цикл заряда длится 8-16 часов.

SLA всегда должны храниться в заряженном состоянии. Оставив батарею в разряженном состоянии, вы запустите в ней процесс под названием сульфатация (по сути, это окисление и кристаллизация), что может привести к невозможности ее последующей перезарядки.

В отличие от никель-кадмиевых аккумуляторов, SLA не любит глубокого разряда. Полный разряд вызывает дополнительную деформацию, и каждый цикл лишает батарею небольшого количества мощности. Эта спадающая характеристика износа относится и к другим химическим батареям в той или иной степени. Для того, чтобы предотвратить частые глубокие разряды батареи, лучше использовать SLA несколько большей, чем требуется емкости.

В зависимости от глубины разряда и рабочей температуры, SLA обеспечивает от 200 до 300 циклов заряда/разряда. Основной причиной столь относительно короткого жизненного цикла является коррозия сетки положительного электрода, истощение активного материала и расширение плюсовых пластин. Эти изменения более ярко выражены при более высоких рабочих температурах.

Оптимальной рабочей температурой для батарей SLA и VRLA , является температура в 25°C . Как правило, повышение температуры на 8°C сокращает срок службы батареи в два раза. VRLA , работающая в течение 10 лет при 25°C проработает только 5 лет при 33°C, и чуть более года при температуре 42°C.

Среди современных аккумуляторных батарей, семейство свинцово-кислотных аккумуляторов имеет самую низкую плотность энергии, которая измеряется в Ватт/кг, что делает его непригодным для портативных устройств, которым требуется компактный источник питания. Кроме того, КПД таких аккумуляторов при низких температурах оставляет желать лучшего.

Свинцово-кислотные батареи хорошо работают на высоких импульсных токах. Полная мощность может быть выдана в нагрузку за короткое время. Это делает их идеальными для использования там, где может внезапно понадобиться большое количество энергии. Именно поэтому они используются для электрического запуска двигателей внутреннего сгорания в большинстве транспортных средств.

С точки зрения утилизации, SLA является менее вредными, чем никель-кадмиевые батареи, но высокое содержание свинца делает SLA неэкологичными.

Преимущества свинцово-кислотных аккумуляторов

  • Недорогие и простые в изготовлении — с точки зрения затрат на Вт·ч, SLA является наименее дорогими. Например, аккумулятор 12В емкостью 3.2 А·ч, имеющий размеры 134x67x60мм, стоит порядка 400 рублей.
  • Зрелая, надежная и хорошо освоеная технология — при правильном использовании, SL A достаточно долговечны
  • Низкий саморазряд — скорость саморазряда является одной из самой низких в аккумуляторных системах (3-20% в месяц)
  • Низкие требования к обслуживанию — нет эффекта памяти, нет необходимости доливать электролит
  • Способность к большой токоотдаче. Для упомянутого выше аккумулятора с C = 3.2 А·ч токоотдача составляет не менее 16А. Аккумулятор отдает большой пусковой ток в нагрузку, при этом не просаживая напряжение питания.

Недостатки свинцово-кислотных аккумуляторов

  • Не могут храниться в разряженном состоянии
  • Высокая чувствительность к изменению температуры — влияет и на продолжительность работы и на срок жизни аккумулятора
  • Низкая плотность энергии — слабая весо-энергетическая плотность аккумулятора ограничивает область применения стационарными и колесными приложениями, поэтому их целесообразно использовать только в больших и средних по размерам роботах (если уж говорить о роботах)
  • Позволяет только ограниченное количество полных циклов разряда — хорошо подходит для резервных приложений, в которых происходят только случайные глубокие разряды
  • Экологически вредные — электролит и содержание свинца делают их небезопасными для окружающей среды
  • Транспортные ограничения для заливных свинцово-кислотных батарей — в случае аварии может произойти утечка кислоты

Типичные характеристики свинцово-кислотных аккумуляторов

Приведу типичные значения параметров, встречающиеся для необслуживаемых 6 и 12 вольтовых батарей с емкостью порядка 0.8-7 А·ч:

  • Теоретическая энергоемкость: 135 Вт·ч/кг
  • Удельная энергоемкость: 30-60 Вт·ч/кг
  • Удельная энергоплотность: 1250 Вт·ч/дм 3
  • ЭДС заряженного аккумулятора: 2.11В
  • Рабочее напряжение: 2.1В (3 или 6 секций дают стандартные 6.3 или 12.6В)
  • Напряжение полностью разряженного аккумулятора: 1.75-1.8В (на одну секцию). Более низкий заряд не допускается
Напряжение Заряд
12.70В 100%
12.46В 80%
12.24В 55%
12.00В 25%
11.90В 0%
  • Рабочая температура: от -40 до +40ºС
  • КПД: 80-90%

Принцип работы

Принцип работы СКА основан на окислительных свойствах четырехвалентного свинца и его переходе в более устойчивое двухвалентное состояние. СКА в простейшем случае можно рассмотреть как две решетчатые свинцовые пластины, ячейки которых заполняются тестообразной смесью окиси свинца с водой. Пластины погружаются в разбавленную серную кислоту плотностью 1,15-1,20 г.см3(22-28% H2SO4). Вследствие реакции

PbO + H 2 SO 4 = PbSO 4 + H 2 O

Окись свинца превращается через некоторое время в сернокислый свинец. Если теперь попустить через эти пластины постоянный ток, то аккумулятор будет заряжаться, причем у электродов будут происходить следующие процессы:

ЗАРЯД

КАТОД PbSO 4 + 2е - = Pb + SO 4

АНОД PbSO 4 - 2 е - + H2O = PbO 2 + 4H + SO 4 -2

Таким образом, по мере пропускания тока на катоде образуется рыхлая масса металлического свинца, а на аноде - темно-бурая окись свинца. По окончанию зарядки аккумулятора начнется энергетичное разложение воды: у катода выделяется водород, у анода - кислород.

При соединении пластин проводником с платины покрытой свинцом, часть ионов двухвалентного свинца переходит в раствор, освобождающиеся при этом электроны по проводнику переходят к PbO 2 и восстанавливают четырехвалентный свинец в двухвалентный. В результате у той и другой пластины образуются ионы двухвалентного свинца, которые соединяются с находящимися в растворе ионами SO 4 в нерастворимый сернокислый свинец, и аккумулятор разряжается.

РАЗРЯД

ОТРИЦАТЕЛЬНЫЙ ЭЛЕКТРОДPb 0 - 2е - + SO 4 -2 = PbSO 4

ПОЛОЖИТЕЛЬНЫЙ ЭЛЕКТРОД PbSO 4 + 2е - + 4 H + SO 4 -2 = PbSO 4 + 2H 2 O

При разрядке аккумулятора концентрация серной кислоты уменьшается, так как расходуются сульфат - ионы и ионы водорода и образуется вода. Поэтому о степени разряженности аккумулятора можно судить по плотности кислоты.

Особенности свинцово-кислотных аккумуляторов.

Экономичнее СКА до сих пор ничего не изобретено. Широкое распространение они получили благодаря высокой надежности и низкой цене.

Первый СКА был изобретен в 1859 г. французским ученым Гастоном Планте, его конструкция представляла электроды из листового свинца, разделенные сепараторами из полотна, которые были свернуты в спираль и помещены в сосуд с 10% раствором серной кислоты. Первоначально у них была низкая емкость, и требовалось достаточно большое количество циклов заряда-разряда, чтобы увеличить емкость, для получения существенного результата требовалось до двух лет.

В 1880г. К. Фор предложил предложил технологию изготовления намазных электродов, путем нанесения на пластины окислов свинца. А в 1881 г. Э. Фолькмар предложил использовать в качестве электродов намазную решетку. В том же году Седлону был выдан патент на технологию изготовления решеток из сплавов свинца и сурьмы. Однако существовала проблема заряда батарей (для заряда применялисьпервичные элементы конструкции Бунзена - один ХИТ заряжал другой). Ситуация кардинально изменилась с появлением генераторов постоянного тока.

К 1890 г был освоен серийный выпуск СКА, а в 1900г. Varta выпустила первый стартерный аккумулятор.

В настоящее время активно производятся и используются аккумуляторы трех поколений

Батареи первого поколения - батареи с жидким электролитом открытого или закрытого типа, имеющие емкость от 36 Ач до 5328 Ач и срок службы от 10 до 20 лет. Батареи открытого типа непосредственно соприкасается с открытым воздухом, и основные затраты связанны с обслуживанием (доливка дисцилиронанной воды) и расходы на содержание хорошо вентилируемых помещений. Батареи закрытого типа имеют специальные пробки, обеспечивающие задержку аэрозоли серной кислоты. Батареи закрытого типа могут быть необслуживаемые, т.е.они поставляются залитыми и заряженными, и в течение всего срока службы нет необходимости доливки воды (конструкция пробок обеспечивает удержание паров воды в виде конденсата).

Батареи второго поколения - герметизированные гелевые батареи (GEL). В них используется гелеобразный электролит, представляющий собой желе, полученное в результате смешивания раствора серной кислоты с загустителем (обычно двуокись кремния SiO 2 - селикагель). Благодаря своей вязкости он хорошо удерживается в порах и способствует эффективному использованию активных веществ электродов. Транспорт кислорода обеспечивается по трещинам, которые возникают при усадке твердеющего электролита. Гелевые батареи в течение всего срока эксплуатации не нуждаются в обслуживании, их нельзя вскрывать. Для их подзаряда необходимо использовать ЗУ, обеспечивающие стабильность напряжения заряда не хуже 1% для предотвращения обильного газовыделения. Такие аккумуляторы критичны к температуре окружающей среды.

Батареи третьего поколения - геметизированные батареи с абсорбированным сепараторами электролита (AGM - absorbed in glass mat).. Такой сепаратор из стекловалокна, представляет собой пористую систему, в которой капиллярные силы удерживают электролит. При этом количество электролита дозируется так, чтобы мелкие поры были заполнены, а крупные оставались свободными для свободной циркуляции выделяющихся газов. Благодаря тонкой структуре волокон обеспечивается высокая скорость переноса кислорода. Использование стекловолокнистого сепаратора и плотная сборка блока электродов способствует также уменьшению оплывания активной массы положительного электрода и разбуханию губчатого свинца на отрицательном электроде. Газообразование в них существенно меньше, чем в гелевых, меньше оказывает влияние на работу температура окружающей среды. Хотя требования к ЗУ такие же, как и для гелевых.

Для обозначения типа аккумуляторной батареи указывают ее маркировку, которая определяется конструкцией положительных пластин

Маркировка

Особенности конструкции

Стандарт

GroE

Стационарные батареи с поверхностными положительными пластинами

DIN 40732/ DIN 40738

OPzS

Стационарные батареи с панцирными положительными пластинами и разделителями

DIN 40736/ DIN 40737

Стационарные батареи с решетчатыми положительными пластинами

DIN 40734/ DIN 40739

Моноблочные батареи с решетчатыми положительными пластинами

DIN 43534

В СКА электролитом является раствор серной кислоты, активным веществом положительных пластин - оксид свинца, отрицательных - свинец. В гелевых аккумуляторах жидкий электролит заменили гелеобразным абсорбированным сепараторами электролит, батареи герметизировали, а для отвода газа, выделяющегося при заряде или разряде, установили безопасные клапаны. Были разработаны новые конструкции пластин на основе медно-кальциевых сплавов, покрытых оксидом свинца, на основе титановых, алюминиевых и медных решеток.

При изготовлении СКА применяют химические добавки. Например к свинцу добавляют сурьму (доля в сплаве 1-10%), которая обеспечивает более прочный электрический контакта активного материала с решеткой, предотвращает его осыпание, что позволяет увеличить срок службы батарей. Также используются свинцово-кальциевые сплавы, позволяющие сделать пластины более легкими и прочными при сохранении высоких электрических и механических характеристик.

Следует обратить внимание, что увеличить емкость свинцовой батареи можно сравнительно легко, например, добавив в батарею никель, при этом понизится также и себестоимость, но при этом ухудшится и безопасность.

Корпус для батареи изготавливают призматической формы из пластмассы. Хотя существуют батареи цилиндрической формы. Они обеспечивают более высокую стабильность в работе, больший ток разряда, лучшую температурную стабильность.

Основные проблемы при создании герметичного варианта СКА связаны с необходимостью обеспечения условий для уменьшения газовыделения и содействия рекомбинации выделяющегося газа.

Для этого предпринят ряд мер:

1. Использование иммобилизированного (обезвоженного) электролита, который сохраняет высокую электропроводность серной кислоты. Малое его количество позволяет обеспечить лучший транспорт кислорода от положительного электрода к отрицательному и высокий уровень его рекомбинации.

2. Для уменьшения вероятности выделения водорода свинцово-сурьмяные сплавы токоведущих решеток заменяют другими (сплав свинца и кальция до0,1 % Ca , иногда легированного алюминием, сплавы свинца с оловом 0,5-2,5 % Sn ), обеспечивающими более высокое перенапряжение выделения водорода.

3. В отрицательный электрод закладывается емкость больше, чам в положительный. В этом случае при полном заряде положительного электрода оставшаяся недозаряженной часть активной массы отрицательного электрода практически исключает возможность разряда ионов водорода. Кислород, выделяющийся на диоксиде свинца, достигает отрицательного электрода и окисляет губчатый свинец до оксида свинца, который в кислотном электролите переходит в сульфат свинца PbSO 4 и воду. Т.о. газы не выделяются и вода не теряется.

И все же варианты безуходного СКА снабжены аварийным клапаном. При нарушении режимов заряда, при повышенном токе, в батарее происходит активное газообразование (главным образом водорода). Когда давление газов достигнет величины 7,1 … 43,6 кПа откроется предохранительный клапан для обеспечения вентиляции батареи, и благодаря этому устраняется опасность ее взрыва. Поэтому аккумуляторы называются не герметичными, а герметизированными. Другая роль клапана - предотвращение попадания внутрь корпуса атмосферного кислорода во избежание его реакции с активным материалов негативных пластин.

Аккумуляторы содержащие предохранительный клапан называют аккумуляторы VRLA (valve regulated lead acid batteries ) .

Напряжение на элементе СКА - 2,2 В

Среди всех типов аккумуляторов СКА отличаются наименьшей энергетической плотностью. Это делает нецелесообразно их использование в переносных устройствах. Современные герметизированные СКА обладают следующими удельными характеристиками - 40 Втч/ч и 100 Втч/дм3. Они работают в буферном режиме до 10 лет, при циклировании они обеспечивают несколько сотен циклов до безвозвратной потери 20% емкости.

Их продолжительный заряд не станет причиной выхода из строя батареи.

Способность сохранять заряд у этих батарей наилучшая из всех типов аккумуляторных батарей (саморазряд - 40% в год). Они недороги, но эксплуатационные расходы на них выше, чем на те же НКА.

Время заряда СКА составляет 8…16 часов

Номинальной емкостью СКА считается емкость, полученная при разряде в течение 20 часов, т. е. током 0,05С.

В зависимости от глубины разряда и рабочей температуры ресурс СКА может составлять от 1года до 20 лет. В значительной степени срок службы определяется конструкцией элементов батареи.

Главная опасность эксплуатации батареи с неоднородными аккумуляторами определяется тем, что при циклировании с большим количеством аккумуляторов отклонения электрических характеристик одного из них от стандартных незаметны. Но аккумулятор с повышенным сопротивлением будет разогреваться значительно больше остальных, что ведет к повышенным потерям воды и быстрой деградации всей батареи.

Преимущества СКА :

Дешевизна и простота производства - по стоимости 1 Вт ч энергии эта батарея является самой дешевой;

Отработанная, надежная и хорошо понятная технология обслуживания;

Малый саморазряд;

Низкие требования по обслуживанию (отсутствие «эффекта памяти»);

Допустимы высокие токи разряда.

Недостатки СКА :

Не допускается хранение в разряженном состоянии;

Низкая энергетическая плотность;

Допустимо лишь ограниченное количество циклов заряда/разряда;

Кислотный электролит и свинец оказывают вредное воздействие на окружающую среду;

2 sealed lead acid battery

3 SLA battery

предназначается для широкого использования в качестве источника электропитания как в портативных устройствах и приборах, так и в стационарных системах различного назначения; возможная современная альтернатива - ионно-литиевая батарея (lithium-ion battery)

См. также в других словарях:

    Lead-acid battery - Batteries caption=A valve regulated lead acid battery EtoW=30 40 Wh/kg EtoS=60 75 Wh/L PtoW=180 W/kg|CtoDE=70% 92% EtoCP=7(sld) 18(fld) Wh/US$ SDR=3% 20%/month… … Wikipedia

    Battery recycling - is a recycling activity that aims to reduce the number of batteries being disposed as municipal solid waste. It is widely promoted by environmentalists concerned about contamination, particularly of land and water, by the addition of heavy metals … Wikipedia

    Battery (electricity) - For other uses, see Battery (disambiguation). Various cells and batteries (top left to bottom right): two AA, one D, one handheld ham radio battery, two 9 volt (PP3), two AAA, one C, one … Wikipedia

    battery - /bat euh ree/, n., pl. batteries. 1. Elect. a. Also called galvanic battery, voltaic battery. a combination of two or more cells electrically connected to work together to produce electric energy. b. cell (def. 7a). 2. any large group or series… … Universalium

    Battery - /bat euh ree/, n. The, a park at the S end of Manhattan, in New York City. Also called Battery Park. * * * Any of a class of devices, consisting of a group of electrochemical cells (see electrochemistry), that convert chemical energy into… … Universalium

    VRLA battery - A valve regulated (sealed) lead–acid battery A VRLA battery (valve regulated lead–acid battery) is a type of low maintenance lead–acid rechargeable battery. Because of their construction, VRLA batteries do not require regular addition of water to … Wikipedia

    Automotive battery - 12 V, 40 Ah Lead acid car battery An automotive battery is a type of rechargeable battery that supplies electric energy to an automobile. Usually this refers to an SLI battery (starting, lighting, ignition) to power the starter motor … Wikipedia

    Nickel–cadmium battery - From top to bottom – Gumstick , AA, and AAA Ni–Cd batteries. specific energy 40–60 W·h/kg energy density 50–150 W·h/L specific power 150& … Wikipedia

    Nickel-cadmium battery - Batteries caption=From top to bottom Gumstick , AA, and AAA NiCd batteries. EtoW = 40–60 Wh/kg EtoS = 50–150 Wh/L PtoW = 150W/kg CtoDE= 70%–90% [ ] EtoCP= ? US$… … Wikipedia

    History of the battery - could only function in a certain orientation. Many used glass jars to hold their components, which made them fragile. These practical flaws made them unsuitable for portable appliances. Near the end of the 19th century, the invention of dry cell… … Wikipedia

    Car battery - A car battery is a type of rechargeable battery that supplies electric energy to an automobile [ Horst Bauer Bosch Automotive Handbook 4th Edition Robert Bosch GmbH, Stuttgart 1996 ISBN 0 8376 0333 1, pages 803 807 ] . Usually this refers to an… … Wikipedia

У всех аккумуляторов есть срок годности, с многочисленными циклами заряда-разряда и множеством проработанных часов аккумулятор теряет свою емкость и держит заряд все меньше и меньше.
Со временем емкость аккумулятора настолько падает что дальнейшая его эксплуатация стает невозможна.
Вероятно у многих уже накопились аккумуляторы от бесперебойников (UPS), систем сигнализаций и аварийного освещения.

В множестве бытовой и офисной техники находятся свинцово-кислотные аккумуляторы, и в независимости от марки аккумулятора и технологии производства, будь то обычный обслуживаемый автомобильный аккумулятор, AGM, гелевий (GEL) или маленький аккумулятор от фонарика, все они имеют свинцовые пластины и кислотный электролит.
По окончание эксплуатации такие аккумуляторы выбрасывать нельзя потому как они содержат свинец, в основном их ждет судьба утилизации где свинец извлекают и перерабатывают.
Но все же, не смотря на то что такие аккумуляторы в основном "необслужываемые", можно попытаться их восстановить вернув им прежнюю емкость и использовать еще некоторое время.

В этой статье я расскажу о том как восстановить 12вольтовый аккумулятор от UPSa на 7ah , но способ подойдет для любого кислотного аккумулятора. Но хочу предупредить что данные меры не следует производить на полностью рабочем аккумуляторе, так как на исправном аккумуляторе добиться восстановления емкости можно всего лишь правильным способом зарядки.

Итак берем аккумулятор, в данном случае старый и разряженный, поддеваем отверткой пластмассовою крышку. Скорее всего она точечно приклеена к корпусу.


Подняв крышку видим шесть резиновых колпачков, их задача не обслуживание аккумулятора, а стравливания образующихся при зарядке и работе газов, но мы воспользуемся ними в наших целях.


Снимаем колпачки и в каждое отверстие, с помощью шприца, наливаем 3мл дистиллированной воды, следует заметить что другая вода не годится для этого. А дистиллированную воду можно легко найти в аптеке или на авторынке, в самом крайнем случае может подойти талая вода от снега или чистая дождевая.


После того как мы долили воду, ставим аккумулятор на зарядку и заряжать его будем с помощью лабораторного (регулируемого) блока питания.
Подбираем напряжения пока не появляются какие то значения зарядного тока. Если аккумулятор в плохом состояние то зарядного тока может не наблюдаться, поначалу, вообще.
Напряжения надо повышать, пока не появится зарядный ток хотя бы в 10-20мА. Добившись таких значений зарядного тока нужно быть внимательным, так как ток будет со временем расти и придется постоянно уменьшать напряжение.
Когда ток дойдет до 100мА дальше напряжения уменьшать не надо. А когда ток заряда дойдет до 200мА нужно отключить аккумулятор на 12 часов.

Дальше снова подключаем аккумулятор на зарядку, напряжение должно быть таким чтоб ток зарядки для нашего 7ah аккумулятора был в 600мА. Также, постоянно наблюдая, поддерживаем заданный ток на протяжении 4 часов. Но смотрим за тем чтоб напряжение зарядки, для 12вольтового аккумулятора, было не больше 15-16 вольт.
После зарядки, спустя примерно час, аккумулятор нужно разрядить до 11 вольт, сделать это можно с помощью любой 12вольтовой лампочки (например на 15ват).


После разрядки аккумулятор нужно снова зарядить с током в 600мА. Лучше всего проделать такую процедуру несколько раз, то есть несколько циклов заряд-разряд.

Скорее всего вернуть номинальную не получится, так как сульфатация пластин уже понизила его ресурс, а к тому же имеют место быть и другие пагубные процессы. Но аккумулятор можно будет дальше использовать в штатном режиме и емкости для этого будет достаточно.

По поводу быстрого износа аккумуляторов в бесперебойниках, было замечено следующие причины. Находясь в одном корпусе с бесперебойником, аккумулятор постоянно поддается пассивному нагреву от активных элементов (силовых транзисторов) которые кстати говоря нагреваются до 60-70 градусов! Постоянный прогрев аккумулятора ведет к быстрому испарению электролита.
В дешевых, а порой и даже некоторых дорогих моделях UPSов отсутствует термокомпенсация заряда, то есть напряжение заряда выставлено на 13,8 вольта, но это допустимо для 10-15градусов, а для 25 градусов, а в корпусе порой и намного больше, напряжение заряда должно быть максимум 13,2-13,5 вольта!
Хорошим решением будет вынести аккумулятор за пределы корпуса, если хотите продлить его срок службы.

Также сказывается "постоянный маленький под заряд" бесперебойником, 13.5 вольтами и токе в 300мА. Такая подзарядка призводит к тому что когда кончается активная губчатая масса внутри аккумулятора то начинается реакция в его электродах что призводит к тому что свинец токоотводов на (+) становится коричневым (PbO2) а на (-) стает "губчатым".
Таким образом, при постоянном пере заряде, мы получаем разрушение токоотводов и "кипение" электролита с выделением водорода и кислорода, что приводит к увеличению концентрации электролита, что опять способствует разрушению электродов. Получается такой замкнутый процесс что призводит быстрому расходу ресурса аккумулятора.
Кроме того такой заряд (пере заряд) большим напряжением и током от которого электролит "кипит" - переводит свинец токоотводов в порошковый оксид свинца который со временем осыпается и может даже замыкать пластины.

При активном использование (частом заряде), рекомендуется раз в год доливать в аккумулятор дистиллированную воду.

Доливать только на полностью заряженный аккумулятор с контролем как уровня электролита так и напряжения. Некоем случае не переливать, лучше ее не долить потому как назад отбирать ее нельзя, потому что отсасывая электролит вы лишаете аккумулятор серной кислоты и в последствие концентрация меняется. Думаю понятно что серная кислота нелетучая поэтому в процессе "кипения" во время зарядки, она вся остается внутри аккумулятора - выходит только водород и кислород.

На клеммы подключаем цифровой вольтметр и шприцем на 5мл с иглой заливаем в каждую банку по 2-3мл дистиллированной воды, одновременно светя внутрь фонариком чтобы остановиться если вода перестала впитываться - после заливки 2-3мл смотрите в банку - увидите как вода быстро впитывается, а напряжение на вольтметре падает (на доли вольта). Повторяем доливку для каждой банки с паузами на впитывание по 10-20сек(примерно) до тех пор пока не увидите что "стекломаты" уже влажные - то есть вода уже не впитывается.

После доливки осматриваем нет ли перелива в каждой банке аккумулятора, вытираем весь корпус, устанавливаем на место резиновые колпачки и приклеиваем на место крышку.
Так как аккумулятор после доливки показывают примерно 50-70% зарядки, вам надо его зарядить. Но зарядку нужно осуществлять или регулируемым блоком питания или же бесперебойником или штатным устройством, но под присмотром, то есть во время зарядки необходимо пронаблюдать за состоянием аккумулятора (нужно видеть верх аккумулятора). В случае с бесперебойником, для этого придется сделать удлинители и вывести аккумулятор за пределы корпуса UPSa.

Под аккумулятор подстелем салфетки или целлофановые мешочки, заряжаем до 100% и смотрим, не протекает из какой либо банки электролит. Если вдруг такое произошло, прекращаем зарядку и убираем салфеткой подтеки. С помощью салфетки смоченной в растворе соды - очищаем корпус, все впадины и клеммы куда попал электролит, для того чтоб нейтрализовать кислоту.
Находим банку откуда произошло "выкипание" и смотрим, если в окошке видно электролит, отсасываем излишки шприцем, а потом аккуратно и плавно заправляем этот электролит обратно внутрь волокна. Часто случается что электролит после доливки не равномерно впитался и вскипел вверх.
При повторной зарядке наблюдаем за аккумулятором как описано выше и если "проблемная" банка аккумулятора снова начнет "изливаться" при зарядке, излишки электролита придется удалить из банки.
Также под осмотром следует проделать хотя бы 2-3 полных цикла разряда-заряда, если все прошло отлично и нет никаких подтеков, аккумулятор не греется (легкий нагрев при заряде не в счет), то аккумулятор можно собирать в корпус.

Ну а теперь рассмотрим особо кардинальные способы реанимации свинцово-кислотных аккумуляторов

Из аккумулятора сливается весь электролит, а внутренности промываются сначала пару раз горячей водой, а потом уже горячим раствором соды (3ч.л соды на 100мл воды) оставив в аккумуляторе раствор на 20 минут. Процесс можно повторить несколько раз, а вконце хорошенько промыв от остатков раствора соды - заливают новый электролит.
Дальше аккумулятор сутку заряжают, а спустя, в течение 10 дней, по 6 часов вдень.
Для автомобильных аккумуляторов током до 10 ампер и напряжением 14-16 вольт.

Второй способ это обратная зарядка, для этой процедуры понадобится мощный источник напряжения, для автомобильных аккумуляторов например сварочный аппарат, рекомендуемый ток - 80ампер напряжением 20 вольт.
Делают переполюсовку, то есть плюс к минусу а минус к плюсу и на протяжение пол часа "кипятят" аккумулятор с его родным электролитом, после чего электролит сливают и промывают аккумулятор горячей водой.
Дальше заливают новый электролит и соблюдая новую полярность, на протяжение сутки заряжают током 10-15 ампер.

Но самый эффективный способ делается с помощью хим. веществ.
Из полностью заряженного аккумулятора сливают электролит и после неоднократной промывки водой, заливают аммиачный раствор трилона Б (ЭТИЛЕНДИАМИНТЕТРАУКСУСНОКИСЛОГО натрия), содержащий 2 весовых процента трилона Б и 5 процентов аммиака. Происходит процесс десульфатации на протяжение 40 - 60 минут, на протяжение которого с небольшими брызгами выделяется газ. По прекращению такого газообразования можно судить о завершение процесса. При особо сильной сульфатации аммиачный раствор трилона Б следует залить снова, убрав перед этим отработавший.
Вконце процедуры внутренности аккумулятора тщательно промывают несколько раз дистиллированной водой и заливают новый электролит нужной плотности. Аккумулятор заряжают стандартным способом до номинальной емкости.
По поводу аммиачного раствора трилона Б, его можно разыскать в химических лабораториях и хранить в герметичных емкостях в темном месте.

А вообще если интересно то состав электролита которые выпускают фирмы Lighting, Electrol, Blitz, akkumulad, Phonix, Toniolyt и некоторые другие, это водный раствор серной кислоты (350-450гр. на литр) с прибавлением сернокислых солей магния, алюминия, натрия, аммония. В составе электролита фирмы Gruconnin кроме того содержатся калиевые квасцы и медный купорос.

После восстановления аккумулятор можно заряжать обычным для данного типа способом (например в UPSe) и не допускать разряда ниже 11вольт.
В многих бесперебойниках присутствует функция "калибровка АКБ" с помощью которой можно осуществлять циклы разряд-заряда. Подключив на выходе бесперебойника нагрузку в 50% от максимума ИБП, запускаем эту функцию и бесперебойник разряжает АКБ до 25% а потом заряжает до 100%

Ну а на совсем примитивном примере зарядка такого аккумулятора выглядит так:
На аккумулятор подается стабилизированное напряжение 14.5 вольта, через проволочный переменный резистор большой мощности или через стабилизатор тока.
Ток заряда расчсчитывается по простой формуле: емкость аккумулятора разделяем на 10, например для аккумулятора в 7ah будет - 700мА. И на стабилизаторе тока или с помощью переменного проволочного резистора необходимо выставить ток в 700мА. Ну а в процессе зарядки ток начнет падать и нужно будет уменьшать сопротивления резистора, со временем ручка резистора придет до упора в начальное положение и сопротивление резистора будет равно нулю. Ток будет дальше постепенно уменьшатся до нуля пока напряжение на аккумуляторе не станет постоянным - 14.5 вольта. Аккумулятор заряжен.
Дополнительную информацию по "правильной" зарядке аккумуляторов можно найти

светлые кристаллы на пластинах - это сульфатация

Отдельная "банка" батарея аккумулятора подвергалась постоянному недозаряду и в результате покрыта сульфатами, ее внутреннее сопротивление росло с каждым глубоким циклом, чтоб привело к тому что, во время заряда она стала "закипать" раньше всех, из-за потери емкости и выведения электролита в нерастворимые сульфаты.
Плюсовые пластины и их решетки превратились по консистенции в порошок, в следствие постоянного подзаряда бесперебойником в режиме "стенд-бай".

Свинцово кислотные аккумуляторы кроме автомобилей, мотоциклов и разнообразной бытовой техники, где только не встречаются и в фонариках и в часах и даже в самой мелкой электронике. И если вам попал в руки такой "нерабочий" свинцово-кислотный аккумулятор без опознавательных знаков и вы не знаете какое напряжение он должен выдавать в рабочем состояние. Это легко можно узнать по количеству банок в аккумуляторе. Отыщите защитную крышку на корпусе аккумулятора и снимите ее. Вы увидите колпачки для стравливание газа. по их количеству станет понятно на сколько "банок" данный аккумулятор.
1 банка - 2вольта (полностью заряженная - 2.17 вольта), то есть если колпачка 2 значит аккумулятор на 4 вольта.
Полностью разряженная банка аккумулятора должна быть не ниже 1.8 вольта, ниже разряжать нельзя!

Ну а вконце дам небольшую идею, для тех кому не хватает средств на покупку новых аккумуляторов. Найдите в вашем городе фирмы которые занимаются компьютерной техникой и УПСами (бесперебойниками для котлов, аккумуляторами для систем сигнализаций), договоритесь с ними чтоб они не выбрасывали старые аккумуляторы от бесперебойников а отдавали вам возможно по символической цене.
Практика показывает что половина AGM (гелевых) аккумуляторов можно восстановить если не до 100% то до 80-90% точно! А это еще пару лет отличной работы аккумулятора в вашем устройстве.

Batteries caption=A valve regulated lead acid battery EtoW=30 40 Wh/kg EtoS=60 75 Wh/L PtoW=180 W/kg|CtoDE=70% 92% EtoCP=7(sld) 18(fld) Wh/US$ SDR=3% 20%/month… … Wikipedia

Battery (electricity) - For other uses, see Battery (disambiguation). Various cells and batteries (top left to bottom right): two AA, one D, one handheld ham radio battery, two 9 volt (PP3), two AAA, one C, one … Wikipedia

battery - /bat euh ree/, n., pl. batteries. 1. Elect. a. Also called galvanic battery, voltaic battery. a combination of two or more cells electrically connected to work together to produce electric energy. b. cell (def. 7a). 2. any large group or series… … Universalium

Battery - /bat euh ree/, n. The, a park at the S end of Manhattan, in New York City. Also called Battery Park. * * * Any of a class of devices, consisting of a group of electrochemical cells (see electrochemistry), that convert chemical energy into… … Universalium

Battery recycling - is a recycling activity that aims to reduce the number of batteries being disposed as municipal solid waste. It is widely promoted by environmentalists concerned about contamination, particularly of land and water, by the addition of heavy metals … Wikipedia

VRLA battery - A valve regulated (sealed) lead–acid battery A VRLA battery (valve regulated lead–acid battery) is a type of low maintenance lead–acid rechargeable battery. Because of their construction, VRLA batteries do not require regular addition of water to … Wikipedia

Nickel–cadmium battery - From top to bottom – Gumstick , AA, and AAA Ni–Cd batteries. specific energy 40–60 W·h/kg energy density 50–150 W·h/L specific power 150& … Wikipedia

Nickel-cadmium battery - Batteries caption=From top to bottom Gumstick , AA, and AAA NiCd batteries. EtoW = 40–60 Wh/kg EtoS = 50–150 Wh/L PtoW = 150W/kg CtoDE= 70%–90% [ ] EtoCP= ? US$… … Wikipedia

Automotive battery - 12 V, 40 Ah Lead acid car battery An automotive battery is a type of rechargeable battery that supplies electric energy to an automobile. Usually this refers to an SLI battery (starting, lighting, ignition) to power the starter motor … Wikipedia

Nickel–metal hydride battery - NiMH redirects here. For other uses, see NIMH (disambiguation). Nickel–metal hydride battery Modern, high capacity NiMH rechargeable cells specific energy 60–120 W·h/kg … Wikipedia

History of the battery - could only function in a certain orientation. Many used glass jars to hold their components, which made them fragile. These practical flaws made them unsuitable for portable appliances. Near the end of the 19th century, the invention of dry cell… … Wikipedia

 

Возможно, будет полезно почитать: